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CPU is Driven by a Clock

• Every CPU performs actions that are advanced by a clock

• The clock runs at some frequency and alternates between 0 and 1

• We are generating a clock that each CPU should use as its only clock

• The frequency of our clock can be altered by supplying a divider
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The Memory Subsystem Generates Our 
Clocks
• Use sysclk1 as the clock for your processor

• Unfortunately, the clock divider for the memory subsystem extends 
the number of cycles the clock is kept low, but doesn’t extend the 
time the clock is kept high
• That is, the clock is not always a square wave
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How clock_divide_limit Affects the Clock

• If this value is non-zero, the generated clocks will be gated to zero for 
this number of cycles in between clock pulses

• If this value is zero (or left unmapped), the clocks are not gated

• Reminder: DO NOT SET THE LEAST SIGNIFICANT BIT of the 
clock_divide_limit
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Clock Components

• Each clock cycle has four distinct (and useful) components
• The time the clock is 1

• The falling edge of the clock

• The time the clock is 0 (variable in duration)

• The rising edge of the clock

• We will be using these components to enable actions in our CPU

7



Utilizing the Variable Time the Clock is Low

• The variable duration the clock is low will be used to adjust for the 
unknown propagation delay through combinational logic in your 
processor

• Therefore,
• Use the falling edge of sysclk1 to transition the FSM to the next state

• Use the rising edge of sysclk1 to clock registers
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The Falling Edge

• When we detect a falling edge of the clock, we will advance the CPU’s 
sequencer to its next state
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The Time the Clock is Low

• During the time the clock is low, we will allow signals to propagate 
through combinational logic

• The time the clock is low must be long enough for the longest signal 
propagation path

• Fortunately, we are able to adjust the duration of time the clock is low
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The Rising Edge

• When we detect a rising edge of the clock, we will perform all 
destructive actions
• We will cause enabled registers to be loaded with new values

• The clock is run directly to the clock input of every register

• When appropriate for a particular action or instruction, the enable 
line for each register is set high when the clock is low

• If the enable line is set, the register is loaded on the rising edge of the 
clock
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The Time the Clock is High

• The FSM determines its next state
• The next state must be ready to be loaded into the FSM state register on the 

subsequent falling edge
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Clock Detail
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One Small Hiccup

• When the processor initially starts execution after being reset, the 
first clock edge is a rising edge
• We do not want any destructive events to happen on this first rising edge

• So, the first state in the sequencer FSM should be an idle state that 
does not assert any enable control lines
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Clock Distribution on FPGAs

• Uses an H-tree distribution network to ensure that the clock arrives at 
all flip-flops at approximately the same time
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Clock Arrival Time Discrepancies

• Clock skew: arrival time differences because of trace length to 
different flip-flops

• Clock jitter: arrival time differences to each flip-flop because of 
instability of generated clock frequency (oscillator, phase-locked loop, 
temperature factors, crosstalk)
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DE2-70 (EP2C70) Column Pins Clock Timing
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DE2-70 (EP2C70) Column Pins Clock Timing
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DE2-70 (EP2C70) Inter-clock Network Clock 
Skew
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