
Final Project Clocking
Scheme

Prof. James L. Frankel
Harvard University

Version of 5:49 PM 9-Nov-2021
Copyright © 2021, 2020, 2019, 2017 James L. Frankel. All rights reserved.

CPU is Driven by a Clock

• Every CPU performs actions that are advanced by a clock

• The clock runs at some frequency and alternates between 0 and 1

• We are generating a clock that each CPU should use as its only clock

• The frequency of our clock can be altered by supplying a divider

2

The Memory Subsystem Generates Our
Clocks
• Use sysclk1 as the clock for your processor

• Unfortunately, the clock divider for the memory subsystem extends
the number of cycles the clock is kept low, but doesn’t extend the
time the clock is kept high
• That is, the clock is not always a square wave

3

How clock_divide_limit Affects the Clock

• If this value is non-zero, the generated clocks will be gated to zero for
this number of cycles in between clock pulses

• If this value is zero (or left unmapped), the clocks are not gated

• Reminder: DO NOT SET THE LEAST SIGNIFICANT BIT of the
clock_divide_limit

4

Full-Speed Clock

0

1

Time

5

sysclk1 Clock with non-zero clock_divide_limit

Time

0

1

6

Clock Components

• Each clock cycle has four distinct (and useful) components
• The time the clock is 1

• The falling edge of the clock

• The time the clock is 0 (variable in duration)

• The rising edge of the clock

• We will be using these components to enable actions in our CPU

7

Utilizing the Variable Time the Clock is Low

• The variable duration the clock is low will be used to adjust for the
unknown propagation delay through combinational logic in your
processor

• Therefore,
• Use the falling edge of sysclk1 to transition the FSM to the next state

• Use the rising edge of sysclk1 to clock registers

8

The Falling Edge

• When we detect a falling edge of the clock, we will advance the CPU’s
sequencer to its next state

9

The Time the Clock is Low

• During the time the clock is low, we will allow signals to propagate
through combinational logic

• The time the clock is low must be long enough for the longest signal
propagation path

• Fortunately, we are able to adjust the duration of time the clock is low

10

The Rising Edge

• When we detect a rising edge of the clock, we will perform all
destructive actions
• We will cause enabled registers to be loaded with new values

• The clock is run directly to the clock input of every register

• When appropriate for a particular action or instruction, the enable
line for each register is set high when the clock is low

• If the enable line is set, the register is loaded on the rising edge of the
clock

11

The Time the Clock is High

• The FSM determines its next state
• The next state must be ready to be loaded into the FSM state register on the

subsequent falling edge

12

Clock Detail

FSM Advances
to Next State

Destructive Actions
Take Place

Signals Propagate
Through Gates (Variable in Duration)

13

One Small Hiccup

• When the processor initially starts execution after being reset, the
first clock edge is a rising edge
• We do not want any destructive events to happen on this first rising edge

• So, the first state in the sequencer FSM should be an idle state that
does not assert any enable control lines

14

Clock Distribution on FPGAs

• Uses an H-tree distribution network to ensure that the clock arrives at
all flip-flops at approximately the same time

15

Clock Arrival Time Discrepancies

• Clock skew: arrival time differences because of trace length to
different flip-flops

• Clock jitter: arrival time differences to each flip-flop because of
instability of generated clock frequency (oscillator, phase-locked loop,
temperature factors, crosstalk)

16

DE2-70 (EP2C70) Column Pins Clock Timing

17

DE2-70 (EP2C70) Column Pins Clock Timing

18

DE2-70 (EP2C70) Inter-clock Network Clock
Skew

19

